Warum Pflanzen sich nicht selbst vergiften

Wie bilden Pflanzen Gifte, ohne sich selbst dabei zu schaden? Forscher der Universität Münster haben entschlüsselt, wie Tabakpflanzen Abwehrstoffe herstellen und wie diese wirken.

Münster - Pflanzen können sich durch Gifte gegen Pflanzenfresser verteidigen. In einer neuen Studie konnten Forscherinnen und Forscher des Max-Planck-Instituts für chemische Ökologie (Jena) und der Westfälischen Wilhelms-Universität (WWU) Münster die Biosynthese und genaue Wirkungsweise einer wichtigen Gruppe von Abwehrstoffen, den Diterpen-Glykosiden, in wilden Tabakpflanzen detailliert aufklären.

Diterpen-Glykoside dienen der Verteidigung gegenüber Fressfeinden. Die Studie zeigt, dass die Abwehrstoffe bestimmte Teile der Zellmembran angreifen. Um sich vor den eigenen Giften und der Zerstörung der Zellmembran zu schützen, speichern Tabakpflanzen die Abwehrstoffe in einer ungiftigen Form, die auf eine besondere Art und Weise gebildet wird. Selbsttoxizität und der Schutz davor scheinen bei der Evolution der pflanzlichen Abwehr eine größere Rolle zu spielen als bislang angenommen. Die Ergebnisse sind nun in dem Fachmagazin „Science“ veröffentlicht.

Selbsttoxizität und Verteidigung

Für ihre Untersuchungen wählten die Wissenschaftler Diterpen-Glykoside aus Tabakpflanzen der Art Nicotiana attenuata. „Diese Substanzen kommen in sehr hohen Konzentrationen in den Blättern des Tabaks vor", erläutert Ian Baldwin von der Abteilung Molekulare Ökologie am Max-Planck-Institut, in der die Studie durchgeführt wurde. "Aber wir hatten keine Ahnung, warum sie so wirksame Abwehrstoffe sind und wie sich die Pflanzen vor ihrer toxischen Wirkung schützen. Die Situation ist dabei ganz anders als bei einem anderen Gift dieser Pflanze: dem Nikotin. Nikotin ist ein spezifisches Nervengift. Da Pflanzen weder Nerven noch Muskeln haben und somit für das Gift auch keine Angriffsfläche bieten, ist es für sie ungefährlich, Nikotin zu produzieren und zu speichern.“

Zur Überraschung der Forscher zeigten Tabakpflanzen, die so verändert worden waren, dass sie zwei an der Biosynthese der Diterpen-Glykoside beteiligte Proteine nicht mehr bilden und damit auch den in großen Mengen eingelagerten Abwehrstoff nicht produzieren konnten, auffällige Symptome einer Selbstvergiftung: Sie wurden krank, unfähig normal zu wachsen, und konnten sich auch nicht mehr fortpflanzen. Weitere Untersuchungen ergaben, dass in diesen Pflanzen bestimmte Bestandteile der Zellmembran, sogenannte Spingolipide, angegriffen wurden.

Angriff auf die Zellmembran

Diese Stoffe kommen in allen Tieren und Pflanzen vor, also auch in den Feinden des wilden Tabaks, den Tabakschwärmern Manduca sexta. Die Forscher stellten sich daher die Frage, ob der Spingolipid-Stoffwechsel das Angriffsziel der Diterpen-Glykoside sein könnte. Tatsächlich wuchsen Raupen dieses Schädlings, die an Pflanzen ohne Diterpen-Glykoside gefressen hatten, deutlich besser als auf Kontrollpflanzen mit dem Abwehrstoff. Analysen des Kots von Tabakschwärmerraupen, die Diterpen-Glykoside mit ihrer Nahrung aufgenommen hatten, erbrachten weitere wichtige Erkenntnisse, denn der Abbau der Pflanzengifte bei der Verdauung erfolgt quasi in umgekehrter Reihenfolge zur Synthese in den Pflanzen. Pflanzen verhindern eine Selbstschädigung, indem sie den Abwehrstoff in einer ungiftigen Form einlagern. Wenn Insekten jedoch an der Pflanze fressen, wird ein Teil des Moleküls abspaltet und die bislang entschärften Abwehrstoffe werden „scharf“. „Interessanterweise ist das Angriffsziel der Toxine in beiden Fällen, in Pflanze mit unvollständiger Diterpen-Glykosid-Biosynthese und in der Raupe, der Sphingolipid-Stoffwechsel“, sagt Erstautor Jiancai Li.

Sphingolipide haben eine vermittelnde Funktion bei vielen physiologischen Prozessen. Das wiederum macht die Wirkung der Diterpen-Glykoside auf deren Stoffwechsel so interessant.  „Diterpen-Glykoside und ihre Derivate können nicht nur breite Abwehrfunktionen gegen viele landwirtschaftliche Schädlinge und pathogene Pilze haben, auch viele Erkrankungen beim Menschen, wie Diabetes, Krebs oder einige neurogenerative Erkrankungen, sind mit einem erhöhten Sphingolipid-Stoffwechsel verbunden“, meint Shuqing Xu vom Institut für Evolution und Biodiversität der WWU. Mediziner sind auf der Suche nach wirksamen Substanzen zur Behandlung dieser Krankheiten durch eine Hemmung des Sphingolipid-Stoffwechsels. Die hier untersuchten Diterpen-Glykoside könnten dafür potenzielle Kandidaten sein.

„Frassomics“ – ein neues wirkungsvolles Werkzeug zur Erforschung von Wechselwirkungen zwischen Lebewesen

Die Analyse von Raupenkot erwies sich für diese Studie als Schlüssel zum Erfolg. Die Forscher nennen diesen Ansatz „Frassomics“: eine Zusammensetzung von frass (Raupenkot) und metabolomics der Analyse aller Stoffwechselprodukte (Metaboliten). „Bei dieser Studie wurde uns klar, dass Frassomics ein sehr leistungsstarkes Forschungsinstrument sein kann. Die Analye des Kots von Pflanzenfressern kann sehr nützliche Hinweise darauf liefern, wie Stoffe, die Pflanzen produzieren, von ihren Konsumenten abgebaut werden“, sagt Ian Baldwin. Ziel der Wissenschaftler ist es, mehr Einblicke in solche „Verdauungsduette“ zu erhalten, um ökologische Wechselwirkungen zwischen Pflanzen, Insekten und Mikroorganismen noch besser zu verstehen.

Originalpublikation

Jiancai Li, Rayko Halitschke, Dapeng Li, Christian Paetz, Haichao Su, Sven Heiling, Shuqing Xu, Ian T. Baldwin (2021). Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science. DOI: 10.1126/science.abe4713

Quelle: WWU Münster

Foto: Anna Schroll. Larve des Tabakschwärmers Manduca sexta auf einem Tabakblatt. Die genaue chemische Analyse ihres Kots (kleine schwarze Kugel) zeigte, wie die die Giftstoffe in den Larven aktiviert wurden und gaben so Hinweise auf die Biosynthese der Gifte in der Pflanze, ein Prozess, der im Vergleich zur Verdauung umgekehrt abläuft. Die Forschenden nennen dies "Verdauungsduett".



Teile jetzt diesen Artikel


Lade jetzt kostenlos die App herunter